
 The views expressed in this paper are those of the authors and do not necessarily reflect the policies of1

Statistics Netherlands.
 Statistics Netherlands, Department of Statistical Methods, PO Box 4000, 2270 JM Voorburg, The2

Netherlands (ARGUS@CBS.NL).

1

ARGUS: SOFTWARE FOR STATISTICAL DISCLOSURE
CONTROL OF MICRODATA 1

 A.G. De Waal, A. J. Hundepool and L.C.R.J. Willenborg2

ABSTRACT

In recent years Statistics Netherlands has developed a prototype
version of a software package, ARGUS, to protect microdata files
against statistical disclosure. In 1995 the present prototype version
of ARGUS, namely version 1.1, has been released. In this paper
both the rules, based on checking low-dimensional combinations
of values of so-called identifying variables, and the techniques,
global recoding and local suppression, applied by Statistics
Netherlands to protect microdata sets are described. Subsequently,
it is examined how ARGUS incorporates these ideas. Firstly, the
data needed by ARGUS are described. Secondly, it is explained
how disclosure control measures can be taken by means of
ARGUS. Thirdly, the information generated by ARGUS to
determine the global recodings is described. Based on this
information the user of ARGUS can decide how the variables
should be recoded.

1. INTRODUCTION

To help protect microdata sets against statistical disclosure Statistics Netherlands
has developed a prototype version of a software package, ARGUS. In 1995 the
present prototype version of ARGUS, ARGUS 1.1, has been released.

ARGUS can handle a class of disclosure control rules based on checking the
population frequencies of certain combinations of values of identifying variables.
When such a combination does not occur frequently enough in the population
suitable disclosure control measures should be applied. ARGUS supports two
disclosure control measures, namely global recoding and local suppression. These
measures are usually applied simultaneously to a microdata set. In Section 2 the
disclosure control rules and measures that can be handled by ARGUS are
examined in more detail.

General information on ARGUS is given in Section 3. It is explained what
happens when a microdata set is protected by ARGUS. Several steps can be
distinguished: the combinations that should be checked according to the rules are
generated, the combinations that do not occur frequently enough in the population
are determined, the global recodings can be specified interactively by the user, the

2

local suppressions are determined automatically, and, finally, a report is
generated.

To run ARGUS a file with meta information should be constructed. The
information that should be included in this file is discussed in Section 4. For
example information on the following subjects should be contained in the file: the
kind of microdata set that is to be protected, the threshold values to determine
whether or not a combination occurs frequently enough in the population, and the
estimator that should be used to estimate the population frequency of a
combination. Moreover, information on each variable, such as name, should be
included in the file with meta information.

To operate ARGUS, commands from five menus can be chosen. Each menu is
devoted to one particular task. The five tasks are job handling, e.g. starting and
saving a job, obtaining information on variables and combinations, global
recoding, local suppression, and generating output, e.g. a report or a protected
microdata set. The menus, and their corresponding commands, are described in
Section 5.

The two disclosure control measures that are supported by ARGUS, global
recoding and local suppressions, differ with respect to the way they are executed.
Local suppressions are determined automatically by ARGUS. Global recodings,
on the other hand, have to be specified by the user. To help the user to determine
suitable global recodings ARGUS provides some information on the ‘unsafety’
status of variables and combination. This information is described in Section 6.

The paper is concluded by Section 7, in which the future development of ARGUS
is discussed. An illustration of an ARGUS-session is given in the Appendix.
More information on how to operate ARGUS can be found in De Waal and
Pieters (1995) and Pieters and De Waal (1995).

2. SDC FOR MICRODATA AT STATISTICS NETHERLANDS

2.1. Re-identification

The aim of statistical disclosure control is to limit the risk that sensitive
information of individual respondents can be disclosed from a data set. In case of
a microdata set, i.e. a set of records containing information on individual
respondents, such a disclosure of sensitive information of an individual
respondent can occur after this respondent has been re-identified. That is, after it
has been deduced which record corresponds to this particular individual. So,
disclosure control should hamper re-identification of individual respondents.

Re-identification can take place when several values of so-called identifying
variables, such as ‘Place of residence’, ‘Sex’ and ‘Occupation’, are taken into
consideration. The values of these identifying variables can be assumed known
to friends and acquaintances of a respondent. When several values of these
identifying variables are combined a respondent may be re-identified. Consider
for example the following record obtained from an unknown respondent:

3

‘Place of residence = Urk’, ‘Sex = Female’ and ‘Occupation = Statistician’.

Urk is a small fishing-village in the Netherlands, in which it is unlikely for many
statisticians to live, let alone female ones. So, when we find a statistician in Urk,
a female one moreover, in the microdata set, then she is probably the only one.
When this is indeed the case, anybody who happens to know this unique female
statistician in Urk is able to disclose sensitive information from her record if such
information is contained in this record.

An important concept in the theory of re-identification is a key. A key is a
combination of identifying variables. Keys can be applied to re-identify a
respondent. Re-identification of a respondent can occur when this respondent is
unique in the population with respect to a certain key value, i.e. a combination of
values of identifying variables. Hence, uniqueness of respondents in the
population with respect to certain key values should be avoided. When a
respondent appears to be unique in the population with respect to a key value,
then disclosure control measures should be taken to protect this respondent
against re-identification.

In practice, however, it is a bad idea to prevent only the occurrence of
respondents in the data file who are unique in the population (with respect to a
certain key). For this several reasons can be given. Firstly, there is a practical
reason: unicity in the population, in contrast to unicity in the data file, is hard to
establish. There is generally no way to determine whether a person who is unique
in the data file (with respect to a certain key) is also unique in the population.
Secondly, an intruder may use another key than the key(s) considered by the data
protector. For instance, the data protector may consider only keys consisting of
at most three variables while the intruder may use a key consisting of four
variables. Therefore, it is better to avoid the occurrence of combinations of scores
that are rare in the population in the data file instead of avoiding only population-
uniques in the data file. To define what is meant by rare the data protector has to
choose a threshold value D , for each key value k, where the index k indicates thatk

the threshold value may depend on the key k under consideration. A combination
of scores, i.e. a key value, that occurs less than D times in the population isk

considered rare, a key value that occurs at least D times in the population isk

considered common. Rare combinations of scores that occur in the data file are
called unsafe combinations. Common combinations of scores, and rare ones that
do not occur at all in the microdata set, are called safe combinations. The unsafe
combinations must be protected, while the safe ones may be published.

There is a practical problem when applying the above rule that the occurrence (in
the data file) of combinations of scores that are rare in the population should be
avoided. Namely, it is usually not known how often a particular combination of
scores occurs in the population. In many cases one only has the data file itself
available to estimate the frequency of a combination of scores in the population.
In practice one therefore uses the estimated frequency of a key value k to
determine whether or not this key value is common or not in the population.
When the estimated frequency of a key value, i.e. a combination of scores, is at

4

least equal to the threshold value D , then this combination is consideredk

common. When the estimated frequency of a key value is less than the threshold
value D , then this combination is considered rare.k

2.2. The policy of Statistics Netherlands

Statistics Netherlands has adopted the policy that only certain low-dimensional
keys should be examined. In the case of Statistics Netherlands low-dimensional
keys means keys consisting of at most three variables. An example of such a low-
dimensional key is the following one: ‘Place of residence’ ×‘Sex’ ×‘Occupation’.
Although Statistics Netherlands restricts itself to three-dimensional keys, ARGUS
is able to deal with keys up to five dimensions. A reason why Statistics
Netherlands considers low-dimensional keys only is that it releases two specific
kinds of microdata files. The first kind of microdata files are so-called public use
files. According to the rules of Statistics Netherlands these files may not contain
any sensitive information. Therefore, it is not necessary to pay much attention to
the identifying variables, i.e. because public use files do not contain sensitive
information it is sufficient to examine only low-dimensional keys. The second
kind of microdata files are microdata files for research. These files are only
released to trustworthy researchers, who, moreover, have to sign a contract stating
that they will not misuse the data file to disclose information about individual
respondents. Because of this contract and the fact the data files for research are
released to a select group of trusted researchers only, these data files are not
severely protected. In fact, they are protected to avoid so-called spontaneous
recognition only. That is, it is assumed that the users of a microdata set for
research will not make a deliberate attempt to disclose sensitive information of
individual respondents. However, they may recognize a respondent spontaneously
when examining (low-dimensional) tables. This implies that the keys that have
to be examined are low-dimensional ones.

2.3. SDC techniques

Statistics Netherlands advocates two SDC techniques to protect microdata sets,
namely global recoding and local suppression. In case of global recoding several
categories of a variable are collapsed into a single one. In the above example, for
instance, we can recode the variable ‘Occupation’. For instance, the categories
‘Statistician’ and ‘Mathematician’ can be combined into a single category
‘Statistician or Mathematician’. When the number of female statisticians in Urk
plus the number of female mathematicians in Urk is sufficiently high, then the
combination ‘Place of residence = Urk’, ‘Sex = Female’ and ‘Occupation =
Statistician or Mathematician’ is considered safe for release. Note that instead of
recoding ‘Occupation’ one could also recode ‘Place of residence’ for instance.

It is important to realize that global recoding is applied to the whole data set, not
only to the unsafe part of the set. This is done to obtain an uniform categorization
of each variable. Suppose, for instance, that we recode the ‘Occupation’ in the
above way. Suppose furthermore that both the combinations ‘Place of residence
= Amsterdam’, ‘Sex = Female’ and ‘Occupation = Statistician’, and ‘Place of

5

residence = Amsterdam’, ‘Sex = Female’ and ‘Occupation = Mathematician’ are
considered safe. To obtain a uniform categorization of ‘Occupation’ we would,
however, not publish these combinations, but only the combination ‘Place of
residence = Amsterdam’, ‘Sex = Female’ and ‘Occupation = Statistician or
Mathematician’.

When local suppression is applied one or more values in an unsafe combination
are suppressed, i.e. replaced by a missing value. For instance, in the above
example we can protect the unsafe combination ‘Place of residence = Urk’, ‘Sex
= Female’ and ‘Occupation = Statistician’ by suppressing the value of
‘Occupation’, assuming that the number of females in Urk is sufficiently high.
The resulting combination is then given by ‘Place of residence = Urk’, ‘Sex =
Female’ and ‘Occupation = missing’. Note that instead of suppressing the value
of ‘Occupation’ one could also suppress the value of another variable of the
unsafe combination. For instance, when the number of female statisticians in the
Netherlands is sufficiently high then one could suppress the value of ‘Place of
residence’ instead of the value of ‘Occupation’ in the above example to protect
the unsafe combination. A local suppression is only applied to a particular value.
When, for instance, the value of ‘Occupation’ is suppressed in a particular record,
then this does not imply that the value of ‘Occupation’ has to be suppressed in
another record. The freedom that one has in selecting the values that are to be
suppressed allows one to minimize the number of local suppressions. More on
this subject can be found in De Waal and Willenborg (1995).

Both global recoding and local suppression lead to a loss of information, because
either less detailed information is provided or some information is not given at
all. A balance between global recoding and local suppression has to be found in
order to make the information loss due to SDC measures as low as possible.
Statistics Netherlands recommends to start by recoding some variables globally
until the number of unsafe combinations that have to be protected by local
suppression is sufficiently low. The remaining unsafe combinations have to be
protected by suppressing some values.

ARGUS allows the user to specify the global recodings interactively. Some
information on how to choose these global recodings is provided by ARGUS. In
case the user is not satisfied with a particular global recoding it is easy to undo
it. After the global recodings have been specified the values that have to be
suppressed are determined automatically and optimally, i.e. the number of values
that have to be suppressed is minimized. This latter aspect of ARGUS,
determining the necessary local suppressions automatically and optimally, makes
it possible to protect a microdata set against disclosure quickly.

3. GENERAL INFORMATION ON ARGUS

As is explained Section 2 a microdata file should be protected against disclosure
in two steps according to the policy Statistics Netherlands has currently adopted.
In the first step some variables should be globally recoded. In the second step
some values of variables should be locally suppressed. ARGUS has been

6

developed to perform the necessary tasks. In this section the way ARGUS
performs these tasks is sketched.

To run ARGUS one system file or two ASCII files are necessary. When there is
no system file available a new job has to be started. In that case two ASCII files
should be present, namely one containing the data set that is to be protected and
one containing certain meta information. This latter file is called the meta file.
More information about the meta file can be found in Section 4.

When a new job is started ARGUS starts by reading the values of all identifying
variables for all records into the computer’s memory. At the moment there may
be at most 50 identifying variables. The values of the non-identifying variables
are not read into the computer’s memory. Based on the information in the meta
file ARGUS then generates a set of combinations that have to be examined. Each
combination may consist of values of at most 5 variables. Subsequently, all the
combinations generated are indeed examined, i.e. the estimated population
frequency of each combination is compared with the corresponding threshold
value. A database with information on the variables and the unsafe combinations
is then constructed. This database is called the combinations database.

After construction of this database the user can specify the global recodings. To
help the user determine these global recodings ARGUS provides some
information. When all global recodings have been interactively specified by the
user, ARGUS determines the remaining necessary local suppressions
automatically and optimally, i.e. the number of local suppressions is minimized.
Finally, ARGUS generates a report and creates the protected data file.

Something that may be surprising is that a protected, safe, data file created by
ARGUS may seem to be unsafe when presented again to ARGUS! This is a
consequence of suppressing values. A combination of scores is considered
common when the estimated frequency of that combination in the population is
at least equal to a certain threshold. These estimates are based on the data file that
is to be protected itself. Now suppose that a particular combination of scores
seems to occur frequently enough when its estimated frequency is based on the
original unprotected data file. Suppose furthermore that due to suppressions this
combination occurs less often in the protected data file then in the unprotected
one. In this case it may happen that the estimated frequency of this combination
in the population based on the protected data file is less than the threshold value.
So, based on the protected data file we would conclude that this combination is
unsafe. This is not correct though, because we know from the unprotected data
file that this combination is safe. That it seems to be unsafe when the protected
data file is considered only, is a consequence of the fact that some values have
been suppressed which leads to a lower estimate for the population frequency of
the combination under consideration.

4. DESCRIPTION OF THE META FILE

In this section we examine the meta file that is necessary for an ARGUS-session.
We begin by describing the two kinds of files, MICROFILE and PUBLICFILE,

7

one can protect by means of ARGUS. These kinds of files differ with respect to
the combinations that are generated and subsequently checked. Then we describe
the criteria that can be used to check whether a combination that is generated by
ARGUS is safe or not. Two criteria can be chosen: an absolute criterion and a
relative criterion. How to prescribe the corresponding threshold values is
described next. As ARGUS uses estimated frequencies to determine whether or
not a combination is safe, one has to indicate which estimator one wishes to
apply. There are two kinds of estimators that are supported by ARGUS: an
interval estimator and a compromise estimator. The compromise estimator can
be applied with or without auxiliary information. We explain how one can select
one of these estimators. Local suppressions are determined automatically and
optimally. In practice, one does not want too many local suppressions, however,
as this would introduce bias in the statistical results obtained from the protected
microdata set. This can be accomplished by specifying an upper bound for the
number of local suppressions. We describe how this upper bound can be fixed.
Finally, we describe the information that has to be provided for each variable in
the microdata set.

Kind of file:

In the meta file it has to indicated whether a MICROFILE, i.e. a microdata file for
research, or a PUBLICFILE, i.e. a public use file, is to be protected. In the case
of Statistics Netherlands usually a MICROFILE has to be protected. There are
some differences between protecting a MICROFILE and protecting a
PUBLICFILE. The most important difference is that the combinations that are
generated by ARGUS and that subsequently have to be checked are different for
the two kinds of files. When a MICROFILE is to be protected all combinations
of variables with a different identification level are generated, when a
PUBLICFILE is to be protected all uni- and bivariate combinations of variables
with a non-zero identification level are generated. Another difference is explained
in the subsection ‘Threshold values’ below.

Kind of criterion:

The kind of criterion that should be applied can be selected by the command
ABSOLUTE_CRITERION or RELATIVE_CRITERION. Both of these
commands should be followed by three numbers d , d and g, where d $d and g1 2 2 1

lies between zero and one. These numbers are used only when a compromise
estimator is applied to estimate the population frequencies. They are in fact
population threshold values to determine whether a combination is common or
rare. When ABSOLUTE_CRITERION is used only d is important. When the1

estimated population frequency of a combination is at least equal to d then this1

combination is considered common, otherwise it is considered rare. This criterion
is called an absolute criterion, because only absolute frequencies are taken into
consideration. RELATIVE_CRITERION is more complicated. In this case
ARGUS starts by checking whether the estimated fraction of elements with a
certain combination of scores in the population is at least equal to g. If this is the
case, then ARGUS checks whether the estimated population frequency of

8

elements with this combination of scores is at least equal to d . If the estimated1

population frequency is indeed at least equal to this number, then the combination
is considered common, otherwise it is considered rare. When on the other hand
the estimated fraction of elements with this combination of scores is less than g,
then ARGUS checks whether the estimated population frequency is at least equal
to d . If the estimated frequency is indeed at least equal to d , then the2 2

combination is considered common, otherwise it is considered rare. This criterion
is called a relative criterion, because in the first step it considers the relative
fraction of a combination of scores. Depending on this fraction the absolute
threshold value changes. For more information on the absolute criterion and the
relative criterion see De Vries, De Waal and Willenborg (1994).

Threshold values:

A number of threshold values should be specified after the SAFELIMITS
command. These threshold values are used only when the so-called
DEFAULT_ESTIMATOR is applied. For a MICROFILE the threshold value for
the combinations should be specified. A combination is considered common
when its frequency in the data file is at least equal to this threshold value,
otherwise it is considered rare. For a PUBLICFILE we have two threshold
values: one for the univariate ‘combinations’ and the other for the bivariate
combinations. In this case, the first number in the meta file indicates the threshold
value for the univariate ‘combinations’ and the second number the threshold
value for the bivariate combinations. The number(s) given after SAFELIMITS are
threshold values for the data file and not population threshold values. At Statistics
Netherlands population threshold values are first translated to threshold values
for the data file. This translation has to be done outside ARGUS. To translate
population frequencies to sample frequencies it is assumed that the frequency of
a combination in the data file is Poisson distributed, and by testing whether the
frequency of a combination is higher than the corresponding population threshold
value. More information on this approach can be found in Pannekoek (1989).

Kind of estimator:

DEFAULT_ESTIMATOR indicates that the SAFELIMITS are used. Instead of
using the SAFELIMITS, one can also apply two compromise estimators. In that
case one should type COMBI_ESTIMATOR followed by a ‘1’ for the first
compromise estimator or a ‘2’ for the second estimator. In this case the
population threshold values given by the ‘Kind of criterion’ command are used
(see subsection ‘Kind of criterion’ above). The first compromise estimator does
not use auxiliary information, whereas the second one does. When one wants to
use a compromise estimator then there should be exactly one regional variable in
the data file. Moreover, an additional data file should be provided. When the first
compromise estimator is used, i.e. the compromise estimator without auxiliary
information, then each line of this additional data file should contain a value of
the regional variable followed by the number of elements, e.g. persons, in the
target population in this region. Each value of the regional variable should occur
exactly once in this data file. When the second compromise estimator is used, i.e.

9

the compromise estimator with auxiliary information, then each line of the
additional data file should contain a value of the regional variable, the number of
persons in the target population that this value refers to and the value of the
auxiliary variable. When the regional variable is the place of residence of the
respondents then one could use the degree of urbanization as auxiliary variable
for instance. More information on these compromise estimators can be found in
Pannekoek and De Waal (1994).

Maximum number of local suppressions:

The maximum number of values that may be suppressed by ARGUS should be
indicated. When the minimal number of local suppressions found by ARGUS
exceeds this maximum number ARGUS returns an error message.

Variable information:

We now describe the information that has to be specified for each variable in the
meta file.

1. Variable name

The name of each variable given and its (fixed) place in the data file should be
specified.

2. Missing values

For each variable two missing values have to be specified. One of these missing
values is used when the respondent did not have to answer the corresponding
question due to the routing structure of the questionnaire, the other missing value
is used when the respondent refused to answer this question.

3. Identification level

The identification level of each variable has to be described. The more identifying
the variable is considered to be, the lower the identification level should be
chosen. So, identification level 1 is used for variables that are considered very
identifying, identification level 2 is used for variables that are somewhat less
identifying, and so on. The highest identification level that may be assigned to a
variable is 5. When protecting a so-called MICROFILE, it is important to realize
that variables with a low identification level are considered to be a subset of
variables with a higher identification level. For instance, variables with
identification level 1 are considered to be a subset of the variables with
identification level 2. Likewise, the variables with identification level 2 are
considered to be a subset of variables with identification level 3. The
combinations that are generated by ARGUS in this case are all combinations of
variables with different identification levels, where the above hierarchical
structure is taken into account. The number of variables in such a combination is
at most equal to the highest identification level assigned to a variable. When on
the other hand a so-called PUBLICFILE is to be protected, then all uni- and
bivariate combinations of variables with a non-zero identification level are
generated by ARGUS. The combinations that have been generated are

10

subsequently checked.

To illustrate which combinations are generated in case of a MICROFILE we
assume that there are variables of three different identification levels, 1, 2, and 3.
Variables of each level are examined univariately. Bivariately, the combinations
‘level 1 variable’×‘level 2 variable’, ‘level 1 variable’×‘level 3 variable’, and
‘level 2 variable’×‘level 3 variable’ are generated. Here the hierarchical structure
of the variables is taken into account by ARGUS. For instance, each level 1
variable is also a level 2 variable so combinations ‘level 1 variable’×‘level 1
variable’ are generated by ARGUS. Likewise, ARGUS generates the
combinations ‘level 2 variable’×‘level 2 variable’. Finally, the three-dimensional
combinations ‘level 1 variable’×‘level 2 variable’×‘level 3 variable’ are
generated. Again, the hierarchical structure of the variables is taken into account.
So, in fact the combinations ‘level 1 variable’×‘level 2 variable’×‘level 2
variable’, ‘level 1 variable’×‘level 1 variable’×‘level 3 variable’, ‘level 1
variable’×‘level 1 variable’×‘level 2 variable’, and ‘level 1 variable’×‘level 1
variable’×‘level 1 variable’ are also generated by ARGUS.

4. Priority number

A priority number has to be specified for each variable. When ARGUS suppresses values
it not only minimizes the total number of suppressions, but it also tries to suppress values
of variables with low priority numbers. Technically, ARGUS first examines whether it
can minimize the total number of suppressions by suppressing values of variables with
low priority numbers. When this fails, ARGUS also considers suppression of values of
variables with a higher priority number. This implies that when the priority numbers have
been badly chosen, i.e. when the total number of suppressions can only be minimized
when values of variables with high priority numbers are suppressed, ARGUS will need
much time to find the optimal solution.

5. Compromise estimation

To use one of the two compromise estimators that are available in ARGUS it is necessary
to indicate which variables are regional variables, i.e. variables of which the values refer
to regions. Whether or not a variable is a regional variable is important only when a
compromise estimator is applied to estimate population frequencies.

6. Hierarchical variables

Some variables are hierarchical variables. Each digit of such a variable corresponds to a
particular hierarchical level. These variables can be recoded in a special way, namely by
truncation. This means that some trailing digits from the values of these variables may be
deleted. Whether or not a variable may be truncated has to be indicated.

5. OPERATING ARGUS

In this section we examine how ARGUS can be operated once the data file and meta file
have been constructed. ARGUS can be operated by choosing commands interactively
from several menus. In fact, ARGUS provides five menus, namely one for job handling,
one for information on variables and combinations, one for global recoding, one for local
suppression and one for producing output.

11

5.1 Handling jobs

From the menu for job handling a new job can be started at any moment. When the user
was working on another job already, ARGUS asks whether that job should be saved or
not. It is also possible to go on with an existing job. The protection measures that have
been applied to the corresponding data file during the previous session are then
automatically executed. To be able to go on with an existing job this job must have been
saved during a previous ARGUS-session. When a job is saved ARGUS in fact saves the
corresponding system file.

5.2 Obtaining information on variables and combinations

From the menu for information on variables and combinations frequency count tables and
information on the ‘unsafety’ status of combinations or variables can be examined.
Information on the ‘unsafety’ status of combinations or variables can be obtained from
the combinations database. One can also examine frequency count tables. The frequency
count table that one wants to see can be specified in two ways. Firstly, the frequency
count table can be selected from the combinations that have been generated by ARGUS.
Secondly, the frequency count table can be specified manually. In both cases the resulting
frequency count table can be viewed. A combination from this list can be selected.

Each line of a frequency count table contains the cell number, the values of the
variable(s), and the number of records that score on that particular combination of values.
A univariate frequency count table contains the value of #UCells in addition. This value
provides some information on how to choose the global recodings. The precise meaning
of #UCells is explained in Section 6.

5.3 Global recoding

To recode a variable globally the global recoding menu should be used. When recoding
variables globally it is handy to obtain information about the variables quickly. The user
can see information on the ‘unsafety’ of the variables. The information that can be
obtained is contained in a list of variables that can be shown on the screen. This list
contains the name of the variable, the value of #UCells, the value of #UCat, and the value
of #UComb. These values provide information on how to choose the global recodings.
The precise meaning of #UCells, #UCat and #UComb is again explained in Section 6.
The univariate frequency count table of a variable can be shown on the screen by
selecting one of the variables. This table contains the cell number, the values of the
variable, the frequencies of these values and the values of #UCells.

Now we describe how a global recoding can be specified. Recoding variables globally is
usually done in two steps. Firstly, a file containing information on how to recode a
particular variable should be made. This file is called the recoding file. Secondly, this
global recoding should be performed. Constructing a recoding file can be done during an
ARGUS-session. For the variable that is selected a recoding file will be made.

When a recoding is specified several checks are made. For instance, it is checked whether
the new categories lie within the range specified in the meta file and whether all old
values are recoded at most once. Values that are not affected by the recoding do not have
to be listed. Because a recoding file is an ASCII file it can be prepared before an ARGUS-
session. A recoding file can also be used several times. This is especially useful when one
wants to apply certain standard recodings. These standard recodings could be applied to
the same variable, such as ‘Place of residence’, in different data sets, or to similar
variables, such as ‘Place of residence’ and ‘Place of work’, in a single data set. After a

12

recoding file has been produced the corresponding recoding can be executed. A list of the
variables can be shown on the screen. By selecting one of these variables the
corresponding recoding is performed.

Variables can be truncated. From a list of variables a variable that may be truncated
should be chosen. When such a variable is chosen ARGUS poses the question how many
trailing digits should be deleted. If the answer is ‘1’, for instance, then the last digit of
each value is deleted. A variable may be recoded by truncating it and subsequently
recoding it by means of a recoding file, or vice versa.

When a recoding is not satisfying then this recoding can be undone easily. A list of
variables can again be shown on the screen. By choosing one of the variables in this list
all recodings, truncations as well as recodings specified by the recoding file, applied to
this variable are undone.

5.4 Local suppression

After the global recodings have been specified the local recodings have to be determined.
This can be done by means of the local suppression menu. ARGUS determines the local
suppressions automatically. In some cases, however, one wants to exclude some variable
from local suppression. Therefore, ARGUS allows one to exclude values of certain
variables from suppression. Excluding variables from suppression should be done with
care. In case the variables to be excluded from local suppression are badly chosen it may
be impossible to protect the data file. For instance, when the number of female
statisticians in Urk is too low and all three variables ‘Place of residence’, ‘Sex’ and
‘Occupation’ are excluded from suppression then it is clearly impossible to protect the
combination ‘Place of residence = Urk’, ‘Sex = Female’ and ‘Occupation = Statistician’
by means of suppression.

The local suppressions are determined automatically and optimally, i.e. the number of
local suppressions is minimized. The resulting data file does not contain any unsafe
combinations. When one is not satisfied with the (number of) local suppressions it is
possible to undo them. After undoing the local suppressions one can try some other global
recodings and then determine the local suppressions again.

5.5 Producing output

After the global recodings and local suppressions have been determined a report on the
SDC measures taken can be generated. Such a report can be generated from the menu for
producing output. This report contains information on the applied global recodings,
including the truncations, and the values that have been suppressed locally. After a report
has been generated it can be shown on the screen. This has the advantage that if the result
is not satisfying then other global recodings and local suppressions can be tried
immediately, i.e. without leaving ARGUS first.

The recoded, protected, file can be generated. This protected data file contains all
variables from the original, unprotected, data file. In other words, the protected data file
does not only contain the identifying variables, but also the non-identifying ones. The
records of the recoded file can be placed in random order. Randomizing data files helps
to increase the safety of data files. The reason for randomizing a data file is that data are
often stored in a specific order, for instance all respondents from the same household or
the same region are grouped together. Such a grouping increases the disclosure risk.
Randomizing the data file destroys this grouping.

13

6. RECODING INFORMATION GENERATED BY ARGUS

To help the user determine the global recodings ARGUS providessome information on
the ‘unsafety’ of variables and combinations. In particular, information on #UCells,
#UCat and #UComb can be shown on the screen. The value #UCells of a variable equals
the number of times that this variable occurs in an unsafe cell, i.e. an unsafe combination
of values of variables. The value #UCat of a variable equals the number of categories of
this variable that occur in unsafe combinations. Finally, the value #UComb of a variable
is the number of times that this variable occurs in an unsafe combination of variables.
When the numbers #UCells, #UCat and #UComb are high for a certain variable then this
variable is rather unsafe, and should be recoded.

Note that when #UCells equals, say, 516 this does not imply that 516 values will be
suppressed when automatic and optimal suppression is applied, because several unsafe
combinations may be protected simultaneously by suppressing a single value in case these
unsafe combinations occur in the same record. However, the total number of unsafe cells,
516 in this case, is an upper bound for the number of necessary local suppressions. When
the total number of unsafe cells is low, the number of local suppressions will be low as
well. This kind of information can be useful when deciding whether or not additional
global recodings should be made.

Information on the ‘unsafety’ of categories, i.e. values of variables, can also be shown on
the screen. This information consists of the value of #UCells for each category of a
variable, i.e. the number of times that this category occurs in an unsafe combination.
When the value of #UCells is high the corresponding category is rather unsafe, and
should be recoded.

7. FUTURE DEVELOPMENT OF ARGUS

At the moment ARGUS is rapidly being developed further. In fact, this further
development of ARGUS is a major aim of an ESPRIT-project on SDC. The present
prototype will be extended and improved upon. This will result in a package, µ-ARGUS,
for the SDC of microdata. Apart from this package for microdata another package for the
SDC of tabular data, J-ARGUS, will be developed.

In contrast to the development of ARGUS 1.1 the development of these two packages is
not undertaken by Statistics Netherlands alone. Besides Statistics Netherlands six
scientific and statistical institutions are actively involved in the ESPRIT-project. These
participating institutions are Eindhoven University of Technology, the University of
Manchester, the University of Leeds, the Office of Population Censuses and Surveys
(OPCS), the Istituto Nazionale di Statistica (ISTAT), the Consortio Padova Ricerche
(CPR), and Statistics Netherlands, acting as project coordinator. The international
cooperation on the further development of ARGUS hopefully will not only lead to a more
powerful package for SDC, but also to a harmonization of SDC-rules.

[TdW]

[TdW]

Appendix

14

APPENDIX

USING ARGUS, AN EXAMPLE
In this section we will give an impression of the use of ARGUS to protect a micro-data
file against disclosure risks. We will apply the rules that have been established at Statistics
Netherlands for the generation of a safe micro-file. ARGUS however is capable of
applying a much wider class of rules. The file produced according to these rules is
considered suitable for the use by people at universities and other research institutes, that
have a contract with Statistics Netherlands to use such files only for analysis purposes.

WHAT CAN ARGUS DO

According to the rules we must inspect a large set of tables (univariate, bivariate and
trivariate cross-tabulations) to find unsafe combinations. Unsafe will mean that this
combination is ‘rare’ in the population and therefore a risk of disclosure. These
combinations can then be made safe by recoding some variables (making them less
detailed) or by changing some of the codes in a record into the category ‘missing’.

An ARGUS job will read the data file and store it efficiently in the memory of the
computer. Then it will generate all the tables to be inspected and help you to select and
apply appropriate global recodings. These global recodings will do the major part of the
disclosure protection job. After the global recodings most of the combinations will be
safe, but any remaining unsafe combinations will then be treated by local suppression.
Some variables in the remaining records will be recoded into ‘missing’.

When this the file is safe it can be stored on disk again. Also a report is generated
describing all the steps taken during this process. You will see that even a rather large
data set can be protected against disclosure risks on a moderate computer. This demo was
run on a 486/33Mhz computer with 8Mb RAM connected to a Novell file server
containing the software and the data file.

THE EXAMPLE

In this description we will gave an impression of a typical ARGUS run, without
elaborating on all the details. In this example we will use a file containing 89 498 records
from a month’s portion of the continuous Labor Force Survey in the Netherlands. The
most important (as far as disclosure risks are concerned) variables are ‘Region’, ‘Gender’,
‘Marital status’, ‘Age’, ‘Ethnicity’, ‘Labor-market-position’, and ‘Education’.

According to the rules of Statistics Netherlands the variables have to be divided into 4
categories: more identifying variables, more identifying ones, identifying ones, and other
variables. A most identifying variable is also a more identifying one. Similarly, a more
identifying variable is also an identifying one. The combinations given a value of a most
identifying variable by a value of a more identifying variable by a value of an identifying
variable have to be checked. These combinations have to occur sufficiently often in the
population to be considered safe.

The classification of the variables in the continuous Labor Force Survey into the 4
categories is as follows:

 1. most identifying variables

 Region (28 cat.)

Appendix

15

 2. more identifying variables , but not most identifying variables

 Gender (2 cat.)

 Ethnicity (27 cat.)

 3. identifying variables, but not more identifying variables

 Age (60 cat.)

 Marital status (4 cat.)

 Position in household (9 cat.)

 Number of children (7 cat.)

 Education level (784 cat.)

 Labor market position (10 cat.)

 Occupation (842 cat.)

 Type of enterprise (321 cat.)

 and some other variables

 4. other variables

From prior experiences it was already quite clear that in data files like this one the
variable ‘Region’ (± 700 cat.) is by no means allowed, so we took a higher level of
aggregation (28 cat.) from the beginning. Using the original codes for ‘Region’ would be
very well possible but 32 Mb RAM of memory on our computer would have been
required.

The rules in the Netherlands speak about 3 levels of identification, but ARGUS allows
for up to 5 different levels of identification.

PREPARATION OF THE META DATA

Each package that is used to process a statistical data file must have some knowledge
about the structure of the data file (i.e. the meta data). If this data file would have been
created directly with Blaise, we could have transformed most of the meta data
automatically from the Blaise questionnaire. In this case the Blaise questionnaire was not
available for us so we had to specify the meta data ourselves.

ARGUS expects the data in a fixed format ASCII file. For each variable we need to
specify the name, starting position, length, missing values (2 are possible), the
identification level, a priority level for local suppression, and an indication whether the
coding scheme for this variable is a hierarchical one. In this case the removal of the last
digit is a permitted recoding operation. For one variable this would look like:

Ethnicity 36 2 99 99 2 3 0

(starting position = 36, length = 2, missing values = 99 and 99 (i.e. in fact only one
missing value), identification level = 2, suppression priority = 3 and 0 indicates no
hierarchical code).

Only variables with an identification level greater than 0 need to be specified. All the
other variables however will be copied into the resulting safe file when this file is created
at the end of the job. It is not necessary to specify the code lists of the variables. ARGUS
will create them itself, with the restriction that the codes are strictly numerical.

Some general settings that have to be specified are:

a public use file or a micro data file under contract is required,

the file contains leading spaces or leading zeros

Appendix

16

the specification of your favorite editor, used amongst other things to specify or
modify recoding schemes

the record length

C the maximum number of local suppressions allowed

C the minimum cell value considered safe

THE FIRST STEP

When the meta data has been prepared we can start ARGUS. The first step isloading the
data file into memory. In the firstround ARGUS will read the data file to establish the
code lists of the variables considered. In the second roundARGUS will actually read the
variables into the memory. This took 2 minutes 47 seconds. The next step is to calculate
all the tables. The list of tables results from the different identification levels of the
variables as specified in the meta data. This list contains 163 tables. The generation of
these tables took 1 minute 28 seconds.

We are now ready to inspect the available information to decide which global recodings
are necessary.

Appendix

17

When we look at the most striking bivariate tables we get the following result:

Table Unsafe Combinations
Region × Occupation 4270
Region × Education 3474
Ethnicity × Occupation 1218
Ethnicity × Education 1199
Region × Enterprise 1198
Ethnicity × Enterprise 769
Ethnicity × Age 252

This information suggests that the first step would be to do some recoding for
‘Occupation’, ‘Education’ and ‘Enterprise’. These three variables are all hierarchical, so
the last digit can be removed for all three variables. Also ‘Ethnicity’ and ‘Region’ are
candidates for global recoding but we will treat them later and concentrate on the other
ones first.

The results after this recoding are much better now but still there are toomanyunsafe
combinations:

Table Unsafe Combinations
Region × Occupation 1323
Region × Education 1810
Ethnicity × Occupation 692
Ethnicity × Education 812
Region × Enterprise 110
Ethnicity × Enterprise 210
Ethnicity × Age 252

The next step is to recode ‘Ethnicity’ into 3 categories (Dutch, European and other) and
to recode the region to the level of provinces (12). These recoding schemes are entered
with a simple text editor by specifying which original codes are to be combined into a
single new code. However in most cases these recoding schemes are already available e.g.
from some coordination department. These two recodings improve the results again.

Table Unsafe Combinations
Region × Occupation 483
Region × Education 696
Ethnicity × Occupation 126
Ethnicity × Education 177
Region × Enterprise 44
Ethnicity × Enterprise 7
Ethnicity × Age 0

A final step will be to further recode ‘Occupation’ and ‘Education’. We will remove
another digit. This looks more dramatic than it really is. In total the number of different
categories is reduced from 842 to 88 for occupation and from 784 to 119 for ‘Education’.
The results are now:

Appendix

18

Table Unsafe Combinations
Region × Occupation 60
Region × Education 164
Ethnicity × Occupation 14
Ethnicity × Education 7
Region × Enterprise 44
Ethnicity × Enterprise 7
Ethnicity × Age 0

After these three rounds of global recoding we decide that the rest will be taken care of
local suppressions. Due to the implementation of global recodings in ARGUS these are
executed very quickly. One global recoding takes only one second, while the recalculation
of the set of base tables takes about 1 minute. So ARGUS offers you a fast-working tool
(even on a larger data set) to play with the various recoding possibilities. A simple ‘undo’
function is available if you want to investigate some alternatives.

LOCAL SUPPRESSIONS

When you have decided to switch to local suppressions to deal with the last remaining
unsafe combinations, ARGUS will do it for you without any further interaction from the
user. This step is more time consuming as ARGUS will try to find a optimal suppression
in all the unsafe records, i.e. with a minimum number of suppressions. In our case it took
about 10 minutes. But after that you are sure that you have created a ‘safe’ file according
to the ‘rules’.

In total we have the following result for the local suppression:

Total number of suppressions:1778
Variable Number of suppressions
Region 118
Gender 413
Ethnicity 1049
Education 178
Occupation 3
Enterprise 4

 FINAL STEP

The final step is to generate a report and to write the protected file to disk. In the report
an overview is given of the actions of the ARGUS session. All the global recodings are
listed and also all the local suppressions. This can be used to document the ARGUS
session.

CONCLUSION

The above gives you an impression of a typical ARGUS session with the current
prototype of ARGUS. Even a moderately large data set can be protected against possible
disclosure risks on an average PC fairly quickly. Further developments will include
amongst other things a revision of the interface (Windows), allowing really large data sets
and the inclusion of optimization routines to find a good set of global recodings and local
suppressions.

A demonstration disk and further information can be obtained by contacting the authors
at Statistics Netherlands (e-mail: ARGUS@CBS.NL).

19

REFERENCES

De Vries, R.E., A.G. de Waal and L.C.R.J. Willenborg, 1994, Distinguishingrare from
common characteristics in a microdata set. Report, Statistics Netherlands.

De Waal, A.G. and A.J. Pieters, 1995, ARGUS User’s guide. Report, Statistics
Netherlands, Voorburg.

De Waal, A.G. and L.C.R.J. Willenborg, 1995, Aview on statistical disclosure control
of microdata. Paper submitted to Survey Methodology,Statistics Netherlands, Voorburg.

De Waal, A.G. and L.C.R.J. Willenborg,1995, Global recodings andlocal suppressions
in microdata sets. Report, Statistics Netherlands, Voorburg.

Pannekoek, J., 1989, The disclosurerisk of bivariate population uniques (in Dutch).
Internal note, Statistics Netherlands, Voorburg.

Pannekoek, J. and A.G. de Waal, 1994, Synthetic and combinedestimators in statistical
disclosure control. Report, Statistics Netherlands, Voorburg.

Pieters, A.J. and A.G. de Waal, 1995, A demonstration of ARGUS. Internal note,
Statistics Netherlands, Voorburg.

